
Dilute random spin systems with finite connectivity at low temperature: solution with

continuous components and longitudinal stability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L693

(http://iopscience.iop.org/0305-4470/21/13/004)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) L693-L697. Printed in the UK 

LElTER TO THE EDITOR 

Dilute random spin systems with finite connectivity at low 
temperature: solution with continuous components and 
longitudinal stability 

J R L de Almeidat, C De DominicisS and P MottishawP 
t Departamento de Fisica, Universidade Federal de Pemambuco, 50000 Recife, Brazil 
$ Service de Physique Thtoriquell, CEN-Saclay, F-91191 Cif-sur-Yvette Cedex, France 
9 Hewlett Packard Laboratories, Bristol, UK 

Received 29 April 1988 

Abstract. We study dilute spin systems with finite connectivity (a) at low temperature. 
Near percolation (a = 1 + E )  and for small admixtures of antiferromagnetic bonds we find 
a solution with continuous components for the global order parameter (in contradistinction 
with an ansatz proposed by Mtzard and Parisi and by Kanter and Sompolinsky that only 
contains delta functions). We relate it to an ansatz proposed by Morita and by Katsura 
for spins on a Bethe lattice with a * I  bond distribution. We show that such a solution is 
stable in the longitudinal sector. 

We are interested in dilute spin-glass systems with finite connectivity, a prototype of 
which is the Viana-Bray (1985) model. There all pairs interact and the bond probability 
takes the form 

where (Y is the average connectivity of each site, N the number of sites and f ( J i j )  is 
normalised to unity, for example, 

fa (J,) = as (J ,  - J )  + (1 - a ) S ( J ,  + J) (2) 

1 - a being the admixture of antiferromagnetic bonds. At finite temperature the system 
was first studied by Viana and Bray (1985). There, only the standard order parameter 
qalU2 is needed to the lowest order in I T - T J ,  T, being the critical temperature, and 
ai a replica index running from 1 to n. At very low temperature the problem is more 
difficult for all qa,,,.a, become important and one has to resort to a global order 
parameter g { a , }  that has been introduced by De Dominicis and Mottishaw (1987a, b) 
following a step taken by Orland (1985) and MCzard and Parisi (1985) in optimisation 
problems. At low temperature the above system is also of interest since it maps onto 
the graph partitioning problem (Fu and Anderson 1986) under introduction of a 
constraint. 

Under the assumption that there is no replica symmetry breaking g{a,} becomes 
a function of 6 = Z, a, only. The equation of motion for g( 6) is a simpler and special 
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case of the one derived by De Dominicis and Mottishaw (1987a, b). The g (  6) equation 
of motion has also been established by MCzard and Parisi (1987) and Kanter and 
Sompolinsky (1987) (hereafter referred to as M P  and KS respectively) who provided 
for it with a simple zero temperature solution. This ansatz was shown by Mottishaw 
and De Dominicis (1987, hereafter referred to as I )  to be unstable even in the longitudinal 
sector thus suggesting that one should look for a better ansatz even within the 
assumption of no replica symmetry breaking. 

In this letter we find such an ansatz near the percolation boundary (a - 1) and we 
relate it to another ansatz discovered earlier, for a spin glass on a Bethe lattice with 
a * J bond distribution, by Morita (1984) and Katsura (1986) (hereafter referred to as 
M K ,  see also Wong et a1 (1988)). We discuss its stability and show that as soon as the 
Fourier transform of g ( 6 )  is not localised at 0, *tpJ as in the MP-KS ansatz, but also 
acquires a continuous component in the range ( - p J ,  + p J ) ,  then fluctuations around 
it, in the longitudinal sector, leave the system stable. 

The equation of motion for the global order parameter can be written (equation 
(7) of I )  with 6 = ix, 

+ac 

K a ( x ;  y )  = j+ac dJ f , ( J )  [ du exp(-iyu) exp{ix tanh-'[tanh U tanh(PJ)]}. (4) 

Here we have used G ( x )  = g ( x )  - a so that G ( x )  vanishes at the percolation transition 
a = 1. We work near the transition a = 1 + E and a = 1 - PE, G ( x )  - O ( E ) .  Keeping 
to the lowest order in E we get 

-m --oc 

fm dy 
-r 271 

- 2 ~ G ( x ) + 2 p e ( G ( x ) - G ( - x ) ) =  [ - K , , , ( x ; y ) G * ( y ) .  

To derive (5) we have used the identity, e.g. for f ( J )  as in (2), 

dy 
- K , ( x ;  y ) G ( y )  = a G ( x ) + ( l - a ) G ( - x )  (6) 

valid in the low-temperature limit. 
Equation ( 5 )  looks much like the equation for a spin glass on a Bethe lattice with 

three nearest neighbours (see Matsubara and Sakata 1976, Katsura and Fujiki 1979, 
Morita 1984, Katsura 1986a, b); e.g., in Katsura (1986a, b) 

where S ( x )  is the Fourier transform of the distribution function for the single bond 
effective field (note that S(0) = 1 whereas G ( 0 )  = 0). Katsura (1986a, b)  deals with 
a = 1, i.e. * J  bond distribution. If we are interested in the spin-glass sector, G ( x )  is 
even and (5) becomes 

- 2 ~ G ( x )  = [ dy K ( x ;  y ) G 2 ( y )  
271 

where K can now be taken as either K a = ,  , K a = O  or K a = , , ,  for symmetry reasons. Thus 
we can now relate G ( x )  and S ( x )  via 

(9) S(X) = 1 + G ( x ) / ~ E .  
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We now discuss the solutions to (5). Expliciting K(x;  y )  shows (following Katsura 
1986a, b) that G(x)  can be taken as 

G ( x ) / ~ = a + b  cos(pJx)+d s i n ( p J x ) + C c , j , ( p J x ) + O ( ~ )  (10) 
I 

i.e. we expand G(x)  Fourier transform in Legendre polynomials. Plugging (10) into 
(8) yields coupled equations for a, b, d, cI,  together with the normalisation condition 

a + b +  C O =  0 .  (11) 

These equations are simplified through the use of ( 6 ) .  Their sum also restitutes (11). 
Hence, in the spin-glass sector, one may keep, besides (11) (cf Katsura 1986a, b) 

-2a = a 2 +  b 2 / 2  (12) 

- 2 ~ 2 / =  2ac21-c 2 ( 1 + 2 / )  ~2m121,2m + C cZm~ZrI,?l,2m,2r (13) 
m,r 

The couplings I Z I , Z m ,  Z21,2m,2r are only accidentally null (they are listed in the useful 
paper by Gervois and Navelet (1987)). From (1 1)-( 14) it is clear that one can have either 

( i )  c2/ = 0; - a  = b = $which is the MP-KS ansatz containing only three delta functions 
in G(x)  Fourier transform (at 0, i p J ) ,  or 

(ii) all cZI  # 0. 
The interesting remark made by M K  is that keeping a few c2, only (i.e. a few Legendre 
polynomials in the expansion of G(x)  Fourier transform) yields a rapidly converging 
approximation. We have successively: 

(iia) if c 2 = c 4 =  ... = O  b = co = 819, a = -1619 (15) 

(iib) if c4= . . . = O  b=0.874,c,=0.906,c2=0.115,a=-1.780. (16) 

Here (iib) is identical to the M K  solution as transformed via (9). Note that the very 
simple (iia) only differs from it by less than 2% on b, co and less than 0.1% on a. 

Turning to stability in the longitudinal sector one has the eigenvalue equations 

-(A + E)SG(X) - ( A  - / L E ) (  ~ G ( x )  - 6G( -x)) = - K(x;  y)G(y)SG(y). 5 :: 
As above the most general ansatz is 

6G(x) = A + B  cos(pJx)+D s in(pJx)+x C,j,(PJx) (18) 

O=A+B+Co (19) 

I 

where ( 19) expresses the orthogonality of SG(x) to the constant eigenvector. 
In the spin-glass phase, we note, comparing (5 )  and (17) the obvious, exact 

eigenvalue A = + E  with 6G - G, i.e. an even eigenfunction. The eigenvalue equations 
are 

- ( A  + & ) A  = a A +  b B / 2  (20 )  
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- ( A  +E)CZ/= ~2/A+aC2/+2(1+41) C(c2mB+bC2m)I2/,2m+ C C2mC~J2/ ,2m,2r  
( m  m.r 

with (19)-(21) replacing (11)-(13). 
(i)  Stability around the MP-KS ansatz. In view of the above remark it is surprising 

that in I we could solve exactly for the eigenvalues (in fact for all a and a)  with what 
amounted to an eigenvector with (A, B, CO) components. How could, for instance, 
(21) be satisfied for I > 0, with CO # 0, C2 = C,  = . . . = O ?  The answer is that Z0.2m = 0 
for all positive m, as can easily be checked, so that (17)-(21) can be satisfied, at the 
same time yielding the eigenvalues A ,  = E, A 2  = - ~ / 3 ,  i.e. instability?. 

(i i)  Stability around the continuous (approximate) ansatz. Let us keep 
(A, B, CO,  C, )  as non-zero components. After eliminating A via (19) one gets (with 
A =  ~ + A / E )  

B[ A - 3 b/2 - CO] + CO[ A - b - CO] = 0 

B[ -co/2] + Co[A - b/2  - 5c0/4 + CJ 161 + C2[ CO/ 16 + c2/ 1601 = 0 (22) 

E[-23 c2/ 161 + CO[ 5c0/ 16-3 1 ~, /32]  + C2[A -23 b/  16 - 3 1 c0/32 + 45~2/256] = 0 

Here one reads the determinant (of the coefficients B, CO,  C, )  whose zeros yield the 
eigenvalues for cases (iia) and (iib) as follows. 

(iia) In this case c2 = c4 .  . . = 0, b = co = f as in (15) and one gets 

A I  = 1.041 E A2=0.309 E A 3 =  1.123 E. (23) 

That is, as soon as continuum is introduced, the dangerous eigenvalue A 2  becomes 
positive and the instability is removed. ( A 3  is, like A , ,  another approximation for the 
degenerate eigenvalue +E). 

(iib) This is the MK-like solution as in (16). Here we obtain the eigenvalues 

A I = 0.969 E A 2  = 0.359 E A 3  = 1.094 E. (24) 

Hence, by taking one extra Legendre polynomial (c2) for the order parameter, one 
induces a small change (and a slow covergence towards the exact value h = E). Note 
that little is changed either if one increases the eigenvector number of components; 
e.g., in (iia) keeping only (A, B, CO) one gets A ,  = E, A 2  = + ~ / 3 ,  as compared with (23). 

Finally, at the spin-glass-ferro boundary, we read again on (17) the exact eigenvalue 
A = 0 (right on the boundary, i.e. d = czrtl = 0) and 6G(x)  an odd function. Keeping 
(0, C ,  , C,)  as non-zero components (for simplicity we keep to (iia) i.e. c2 = 0) we have 
the eigenvalue equations (with here A = 1 -2p + A /  E): 

D[A-  ( 6  + co)/2] + Cl[ b/4+ co/6] + C,[b/16+319~0/5376] = 0 

D[3~0/4 ]  + C,[A - 5b/4- 11 CO/ 161 + C3[-3 b/  16 + do/32] = 0 (25) 

D[7cO/ 161 + Cl [ -7b/ 16 + 7~0/96] + C3[ A - 53 b/32 - 29 1 co/256] = 0. 

Focusing on the A = O  eigenvalue that determines the boundary slope p, we get the 
following. 

For a ( D )  component alone p ,  = A. Again going from delta function components 
to continuum components brings a drastic change, namely, 

t Ansatze containing more than three delta functions in the range ( -pJ ,  + p J )  should be also treated as in 
I because the use of (10) would generate non-vanishing c, for all 1. These solutions of (8)  can then be shown 
also to be unstable. 
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for (0, C , )  components pc = 0.171, for (0, C , ,  C,)  p, = 0.175 close to the MP-KS 
value as given in I, i.e. p,= i .  Note that bringing in c2 into (25) would only alter the 
answers by a few per cent. 

To conclude, we now have a more reliable ansatz with (15) or (16). Stability in 
the transverse sector will decide whether this ansatz is the answer or whether one is 
to break the replica symmetry as was needed, e.g., in the Sherrington-Kirkpatrick 
(1975) model (with qala2 only) and carried out by Parisi (1980) or as by De Dominicis 
and Mottishaw (1987c), (with all qm, . . . a , ) .  Note that the order parameters qr use very 
little of the information contained in G(x) since one has 

4 2 ,  = E ( b  +w (26) 

More information is used in corrections that vanish as PJ+m and, of course, in 
determining the fluctuation spectrum. 

We thank H Navelet for providing us with explicit formulae for the couplings I/,,,,. 

References 

De Dominicis C and Mottishaw P 1987a Europhys. Lett. 3 87 
- 1987b Sitges Conf: Proc., May  1986 (Lecture Notes in Physics 268) ed L Garrido (Berlin: Springer) 
- 1987c J. Phys. A :  Math. Gen. 20 L1267 
Fu Y and Anderson P W 1986 J. Phys. F: Met. Phys. 5 965 
Gervois A and Navelet H 1988 SIAM to be published 
Kanter I and Sompolinsky H 1987 Phys. Rev. Lett. 58 164 
Katsura S 1986a h o g .  Theor. Phys. 87 139 
- 1986b Physica 141A 556 
Katsura S and Fujiki S 1979 J. Phys. C: Solid State Phys. 12 1087 
Matsubara F and Sakata M 1976 Prog. Theor. Phys. 55 672 
Mtzard M and Parisi G 1985 J. Physique Lett. 46 L771 
- 1987 Europhys. Lett. 3 1067 
Morita T 1984 Physica 125A 321 
Mottishaw P and De Dominicis C 1987 J. Phys. A :  Math. Gen. 20 L375 
Orland H 1985 J.  Physique Lett. 46 L763 
Parisi G 1980 1. Phys. A :  Math. Gen. 13 L115 
Sherrington D and Kirkpatrick S 1975 Phys. Reu. Lett. 35 1792 
Viana L and Bray A J 1985 J. Phys. C: Solid State Phys. 18 3037 
Wong K Y M, Sherrington D, Mottishaw P, Dewar D and De Dominicis C 1988 J. Phys. A :  Math. Gen. 21 

L99 


